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Abstract

The author presents a polynomial-based algorithm for high-order multidimensional
interpolation at the coarse-fine interface in the context of adaptive mesh refinement
on structured Cartesian grids. The proposed algorithm reduces coarse-fine interpola-
tion to matrix-vector products by exploiting the static mesh geometry and a family
of nonsingularity-preserving stencil transformations. As such, no linear system is
solved at the runtime and the ill-conditioning of Vandermonde matrix is avoided.
The algorithm is also generic in that D, the dimensionality of the computational
domain, and p, the degree of the interpolating polynomial, are both arbitrary posi-
tive integers. Stability and accuracy are verified by interpolating simple functions,
and by applying the proposed method to adaptively solving Poisson’s equation and
the convection-diffusion equation. The companion MATLAB R© package, AMRCFI,
is also freely available for convenience and more implementation details.

Key words: Adaptive mesh refinement; Coarse-fine interpolation; AMRCFI;
Principal lattice; Constrained least square; The convection-diffusion equation.
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1 Introduction

Interface conditions are an important ingredient of structured adaptive mesh
refinement (AMR). This paper reports a high-order, multidimensional, and
conservative interpolation method that produces the necessary fine ghost cell
values at a coarse-fine interface. We first locate a stencil of coarse grid cells,
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Fig. 1. Coarse-fine interpolation for AMR. The fine level is shaded. ‘•’s represent
a fifth-order interpolation stencil for filling the fine-level ghost cells at ‘N’s. The
thick and thin solid lines represent a physical boundary and coarse-fine interface,
respectively. The interpolation stencil for ‘4’s is different from that for ‘N’s.

then fit a multivariate polynomial to the known coarse cell averages of the
stencil, and finally compute the average of this polynomial over smaller ghost
cells. This approach is general in terms of dimensionality and the polynomial
degree, and is efficient in that it only entails matrix-vector products at the
runtime. Its main component, the stencil generation algorithm, is also useful
for least square approaches.

As a powerful tool, AMR has been applied to various differential equations and
scientific computing problems, cf. [6] and references therein. Most of the previ-
ous AMR solvers are second-order accurate and there has been an increasing
interest [7,11,12] in further developing them to higher-order accuracies. In-
deed, this is the main motivation of this work. As shown in Fig. 1, physical
quantities need to be interpolated from the coarse level to the fine level ghost
cells for evaluating discrete operators. This poses a number of challenges:

(I) selecting appropriate interpolation stencils from varying source points;
(II) fulfilling high-order accuracy;

(III) achieving the best efficiency.
(IV) preventing ill-conditioning;

Challenge (I) is due to the fact that, along the coarse-fine interface, the inter-
polation stencil has to adapt itself to the local geometry of available interpola-
tion source. Usually two factors determine which coarse cells are available: the
distance from physical domain boundaries and the proper nesting width, i.e.,
the minimum number of layers of coarse cells that surrounds the fine level, see
(11) and Fig. 3 for its precise definition and illustration.

Previously, linear least square (LLS) has been used, often with an additional
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conservation constraint that the average of the fine ghost values equal that
of the covering coarse cell, see [7] for a fourth-order example via fitting mul-
tivariate polynomials. The interpolation stencils there are handpicked for the
special cases of p = 3, D = 2, 3 and not generic to other values of p and D. In the
(p, D)-generic case, using more source points than necessary does not guarantee
the resulting linear system be nonsingular; blindly adding source points until
the related linear system is nonsingular often results in an inefficient interpo-
lation stencil with a large number of cells, especially for high order accuracies
and multi-dimensional spaces. One major contribution of this paper is to re-
solve this difficulty by proposing a (p, D)-generic stencil-generation algorithm.
Although the new method does not belong to LLS, the generated stencils are
of much utility to the LLS approach, since the related linear system is square
and nonsingular, and more source points can be added in a controlled manner
to yield a LLS formulation, see the end of Section 2.3 for more details.

Challenge (III) concerns efficiency. When the positions of the interpolation
targets and source points are not known a priori, the associated linear sys-
tem has to be solved ‘on-the-fly’; consequently, the efficiency of the interpola-
tion mainly depends on locating the stencil, assembling and solving the linear
system, although minor issues such as polynomial evaluation sometimes re-
quire additional care. For structured AMR, however, a better efficiency can
be achieved by exploiting the following facts on the static mesh geometry:

• the valid interpolation source points are all contained in a rectangular box
or unions of boxes, due to the way how tagged cells are organized into new
refinement levels [1];
• the normalized distances between the coarse cell center and the fine ghosts

centers are uniquely determined by the refinement ratio.

The first fact makes it possible to have a small number 1 of nonsingular stencils
for all coarse-fine interpolation scenarios of a certain order-of-accuracy. The
second fact makes it possible to solve the associated linear system once and for
all so that at the runtime coarse-fine interpolation is carried out by matrix-
vector products. This also avoids the ill-conditioning of the Vandermonde
system and answers challenge (IV).

The rest of the presentation is organized as follows. After a brief introduction
to AMR grids, Section 2.1 defines the coarse-fine interpolation problem as two
parts: generating stencils and their corresponding linear maps; the former is
answered in Section 2.2 while the latter in Section 2.3. Section 3 demonstrates
the stability and accuracy of the proposed method by applying it to fourth-
order AMR solvers as well as simple interpolation tests. Section 4 concludes
this paper with a future research prospect.

1 this number is
(
1 + bp/2c

)D
, e.g., it is 8 for fourth-order interpolation in 3D.
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2 Algorithm

The linear space of all polynomials of degree at most p in D variables is denoted
by ΠD

p, the dimension of which is ND
p =

(
p+D

D

)
[3, p.29]. The set of monomials

{
x 7→ xq : q ∈ ND, |q| ≤ p

}
(1)

spans ΠD
p, thus each element of ΠD

p can be expressed as

f(x) =
∑
|q|≤p

cqx
q, (2)

where |q| = ∑D
d=1 qd and xq =

∏D
d=1 x

qd
d are the usual multi-index notation. For

a multi-index i ∈ ZD, |i| =
∑D

d=1 |id|; abs(i) and sgn(i) denote the absolute-
value function and the signum function, respectively, applied component-wise
to i. Similarly, a partial order i < ī holds component-wise, so do ‘≤’, ‘>’, and
‘≥’. A strict total order J : ND → N sorts the monomial set (1) into a chain
and facilitates iterations over the set of monomials (1); the one employed in
implementing this work is the colexicographical order [9, p.14]:

i <colex ī ⇔ (∃m > 0)(∀d > m) (im < īm) ∧ (id = īd) . (3)

2.1 Formulation of the Coarse-Fine Interpolation Problem

A rectangular mesh discretizes the problem domain Γ into a collection of
control volumes C(i, h) =

[
i− 1

2
, i + 1

2

]
h, where i ∈ ZD, 1 the multi-index

whose components are all 1’s, the mesh spacing h is assumed to be uniform
for ease of exposition. Within a single discretization of the same h, C(i, h) is
represented by i and the cell-average of a scalar function φ : RD → R is defined
as 〈φ〉i = 1

hD

∫
C(i,h) φ(x). A box is a rectangular region uniquely determined by

two multi-indices:

B(j, j̄) =
{
i ∈ ZD : min(j, j̄) ≤ i ≤ max(j, j̄),

}
, (4)

where min and max are also applied component-wise.

In structured AMR, Γ is covered simultaneously by a number of discretiza-
tions {Γ` : ` = 0, 1, · · · , lmax}, with each Γ` a multiindex set representing all
the control volumes at the `th discretization. Inductively, Γ0 is the coarsest
discretization and Γ`+1 = C −1r Γ`, where r is the uniform refinement ratio be-
tween two successive discretizations, and the coarsening operator Cr : ZD → ZD

defined as

Cr(i
′) =

(⌊
i′1
r

⌋
, · · · ,

⌊
i′D
r

⌋)
. (5)
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(a) Proper refinement (b) Improper refinement

Fig. 2. Examples of the proper refinement condition (9).
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Fig. 3. Examples of the proper nesting condition (11). Ω1
0: properly nested at physical

boundary; Ω1
1,Ω

1
2: properly nested within coarse level interior; Ω2

0: properly nested
at coarse-fine interface; Ω2

1: not properly nested at coarse-fine interface.

The inverse image of a coarse cell i under Cr, i.e. the set of the rD underlying
fine cells, is denoted by

U(i) = C −1r (i) = {i′ : Cr(i
′) = i}. (6)

The AMR hierarchy Ω consists of a number of levels, each of which can be
decomposed into a disjoint union of boxes:

Ω =
{

Ω` : Ω0 = Γ0; ∀` > 0,Ω` ⊂ Γ`
}
, (7)

Ω` =
{

Ω`
k : k 6= k′ ⇔ Ω`

k ∩ Ω`
k′ = ∅

}
. (8)

As shown in Fig. 2, the proper refinement condition

∀` > 0,∀k, Ω`
k = C −1r

(
Cr(Ω

`
k)
)

; (9)

ensures that coarsening or refining does not change the covered region.

Denote the Minkowski addition of a point set Ψ and the box B(0, i) by

G(Ψ, i) = {j + iB : j ∈ Ψ; iB ∈ B(0, i)} , (10)
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the proper nesting condition requires

∀` > 0,∀0 < m ≤ wnest, Ω`−1 ⊇ Γ`−1 ⋂  ⋃
abs(i)=m1

G
(
Cr(Ω

`), i
) , (11)

where wnest ≥ 1 is the proper nesting width, see Fig. 3 for an illustration.
The value of wnest depends on the ratio of the maximum width of the finite-
difference stencils to the refinement ratio. For fourth-order methods, usually
wnest = 1 for r = 4; only fine ghosts within the coarse cells abutting the
coarse-fine interface need to be filled.

A stencil S is a set of multi-indices, each of which represents a control volume,
its cardinality is denoted by #S. To formalize the coarse-fine interpolation
problem, we denote by 〈φ〉S the average of a scalar function φ : RD → R over
S and ΦS the value vector of 〈φ〉S . A polynomial f fits ΦS if 〈f〉S = ΦS . A
stencil S is poised for fitting if, for any given ΦS , there exists a polynomial
that fits ΦS .

Definition 1 (The Coarse-Fine Interpolation (CFI) Problem) Given a
coarse AMR level Ω` satisfying (8), (9), and (11), the (p+1)th-order CFI prob-
lem seeks (i) an algorithm of poised stencil generation (i ∈ Ω`) 7→ (S(i) ⊆ Ω`)
with #S = ND

p = dim ΠD
p, and (ii) an associated linear map B : ΦS(i) 7→ ΦU(i),

such that ‖ΦU(i) −B ΦS(i)‖ = O(hp+1) for any φ ∈ Cp and any i ∈ Ω`, where
U(i) is defined in (6) and h the grid size of Ω`.

Note that the condition #S = ND
p = dim ΠD

p is implied by the fitting condition
〈f〉S = ΦS , from which the CFI matrix B can be deduced as 〈Φ〉U = 〈f〉U .
Clearly such a CFI is accurate of order p + 1 and satisfies the conservation
constraint

1

rD
∑

i′∈U(i)
〈φ〉i′ = 〈φ〉i , (12)

because of the finite-volume formulation and the fact that the polynomial
determined by 〈Φ〉S(i) and used for evaluating 〈Φ〉U(i) is the same for any
given i. In a word, Definition 1 implies automatic conservation.

In the case of LLS, #S > ND
p and hence 〈f〉S = ΦS cannot be satisfied exactly;

instead, ‖ 〈f〉S − ΦS‖ is minimized with (12) as an additional constraint.

A multi-index j∗(i) characterizes the local geometry of available points around
a coarse cell i ∈ Ω`:

∀j with abs(j) = j∗, B(i, i + j) ⊆ Ω`, (13a)

∀j 6= 0 and sgn(j) = sgn(j∗), G(B(i, i + j∗), j) 6⊆ Ω`. (13b)

Intuitively, j∗(i) is the offset from i to the closest ‘corner’ of the coarse box
that contains i, see Fig. 4 for an illustration.
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Fig. 4. Characterizing the geometry of available points. The shaded fine level is
nested inside a coarse box Ω`

k with wnest = 2. ‘•’ represents a coarse cell and ‘◦’
the closest corner of Ω`

k; the offset from the former to the latter is j∗, shown as a
dashed arrow.

2.2 Poised Stencil Generation: ‘Align-Cut-and-Flip’

To generate a stencil, theoretically one can enumerate all the possible choices,
compute the condition number for each choice, and select the one with the least
condition number. However, rapid growth of the number of possible choices
with respect to p and D makes this approach impractical. For example, to
choose a stencil for a polynomial of degree 3 from a 3D 4-by-4-by-4 box, there
are more than 1017 choices!

The proposed algorithm for generating poised stencils is based on simple trans-
formations of principal lattices. The original concept was defined in RD [8] and
proved to be poised by a geometric characterization [4]. Restricting this con-
cept to ND, we define the pth order principal stencil as

PD
p =

{
q ∈ ND : |q| ≤ p

}
. (14)

Note that the word change from ‘lattice’ to ‘stencil’ reflects the specialization
from RD to ND. Interestingly, this stencil is also the set of multi-index powers
of the monomial basis as appeared in (1). Since both the dimension of ΠD

p and
the cardinality of PD

p are ND
p , PD

p has the minimum cardinality of all poised
stencils for (p+ 1)th-order polynomial fitting.
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Fig. 5. principal stencil transformation. The principal stencil is aligned with the
coarse cell 0, whose fine ghosts need interpolation; i∗ then cuts the D-dimensional
space into 2D hyperoctants. The multi-indices in the all-negative i∗-hyperoctants
(shaded area) remains unchanged while those in all other i∗-hyperoctants (unshaded
areas) are flipped to corresponding 0-hyperoctants. Different types of hatches mark
the correspondence. This example has i∗ > 0, so ia = i∗ and lines 11-17 of Algorithm
1 are not invoked. The iteration in lines 3-10 uses the total order (3).

Input: polynomial degree p ∈ N+; dimensionality D ∈ N+; i∗ ∈ ZD

Output: a poised stencil S(i∗) with ND
p multi-indices.

ia ← abs(i∗)1

S ← an empty set of multi-indices2

foreach q ∈ PD
p do3

for d = 1, 2, · · · , D do4

if qd > iad then5

qd ← iad − qd6

end7

end8

add q into S9

end10

for d = 1, 2, · · · , D do11

if i∗d < 0 then12

forall i ∈ S do13

flip the sign of id14

end15

end16

end17

return S18

Algorithm 1: Principal stencil transformation: align-cut-and-flip.
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(a) i∗ = (p, p)T (b) i∗ = (p, 1)T (c) i∗ = (1, 1)T (d) i∗ = (−1, 1)T

(e) i∗ = (p, p)T (f) i∗ = (p, 1)T (g) i∗ = (1, 1)T (h) i∗ = (−1, 1)T

(i) i∗ = (p, p)T (j) i∗ = (p, 2)T (k) i∗ = (1, 2)T (`) i∗ = (−1, 2)T

Fig. 6. Examples of 2D stencils generated by Algorithm 1. p = 3, 4, 5 for the first,
the second, and the third row, respectively. ‘∗’ represents i∗, a star-shaped pentagon
the coarse cell 0, a circle a nonzero multi-index in the stencil.

The algorithm of poised-stencil generation is a mapping from a multi-index
i∗to a poised stencil S(i∗) with the same cardinality as that of the principal
stencil PD

p . It is assumed that 0 always represent the coarse cell whose fine
ghosts need interpolation; this incurs no loss of generality because the coordi-
nates can be translated so that the origin coincide with the coarse cell being
processed. As illustrated in Fig. 5(a), we first align the principal stencil PD

p

with the coarse cell 0, then observe that the hyperplanes through ia = abs(i∗)
and orthonormal to the coordinate axes cut the D-dimensional space into a set
of 2D D-hyperoctants; likewise those hyperplanes through the origin 0 lead to
another set of D-hyperoctants. For all ia-hyperoctants except the all-negative
one, we flip the multi-indices to corresponding 0-hyperoctants, as shown in
Fig. 5(b) and lines 3-10 of Algorithm 1. Finally, lines 11-17 of Algorithm 1 flip
the transformed stencil as a whole to select one of its symmetries according
to sgn(i∗). Clearly, the align-cut-and-flip procedures amount to a one-to-one
mapping between the multi-indices of S and PD

p , thus the structure of the
principal stencil is preserved in the transformed stencils.

To further illustrate Algorithm 1, examples of transformed stencils are shown
in Fig. 6 and Fig. 7 for D = 2 and D = 3 respectively. Any generated stencil is
bounded within a box of size (p+1)D in only one i∗-hyperoctant. In particular,
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Fig. 7. Examples of 3D stencils generated by Algorithm 1. p = 2, 3, 4 for the first,
the second, and the third row, respectively. See caption of Fig. 6 for symbols.

if i∗ ≥ p1, Algorithm 1 produces principal stencils, as shown in the first
columns of Fig. 6 and Fig. 7. The stencils in the fourth columns of the two
figures are obtained by flipping the signs of the x-coordinates of those in the
third columns, this illustrates lines 11-17 of Algorithm 1.

Define the complete matching set as

MD
p =

{
S(i∗) : 0 ≤ abs(i∗) ≤

⌊
p

2

⌋
1

}
, (15)

where S(i∗) is a stencil generated by Algorithm 1. To choose a stencil from MD
p

for a coarse cell i, one could first compute j∗(i) from (13) and then determine
i∗ from j∗ by

i∗d =

j
∗
d , if |j∗d | ≤

⌊
p
2

⌋
;

sgn(j∗d)
⌊
p
2

⌋
, otherwise.

(16)

It follows from (13), (16), and Algorithm 1 that S(i∗) ⊆ Ω` holds 2 . The

2 strictly speaking, this needs another condition that the box containing i has a
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choice of i∗ in (16) aims to center S(i∗) as much as possible; meanwhile, no

component of i∗ has an absolute value bigger than
⌊
p
2

⌋
. Consequently, (15)

is complete in that it contains all possible cases of fitting the stencil to the
available points.

Currently a rigorous proof of the poisedness of the generated stencils is un-
available, partly because of the scarcity of theorems on concave sets, and
partly because of its connection to the open problem of poised lattice clas-
sification [4]. Nonetheless, the author gives a strong heuristic argument that
multi-indices in the transformed stencil and the principal stencil have a simple
one-to-one correspondence by Algorithm 1. In other words, each multi-index
in a transformed stencil corresponds to a monomial base function of ΠD

p. Nu-
merical calculations also verify the poisedness of the transformed stencils for
(p, D) ∈ [1, 9]× [1, 5].

2.3 The CFI Matrix

Given a poised stencil, the CFI problem is conceptually simple: a square matrix
maps ΦS to the monomial coefficients cq’s and another rectangular matrix
maps cq’s to ΦU ; hence the product of these two matrices maps ΦS to ΦU .

Because the cardinality of S equals the dimension of ΠD
p, integrating (2) over

cells in S yields a square linear system

Aa = ΦS , (17)

where the J(q)th component of the unknown vector is aq = cqh
|q|, and an

element of the basis matrix A is

Ai,q =
D∏

d=1

(
zqd+1
d

qd + 1

∣∣∣∣id+ 1
2

id− 1
2

)
. (18)

Similarly, the integral of (2) within a fine cell i′ ∈ U(i) leads to

〈φ〉i′ = rD bi′ · a = rD
∑
q

bi
′

qaq,

where the J(q)th component of the row vector is

bi
′

q =
D∏

d=1

(
zqd+1
d

qd + 1

∣∣∣∣∣
2i′

d
−r+2

2r

−
2i′

d
−r

2r

)
. (19)

size at least (p+ 1)D, which is usually satisfied by the grid generation algorithm.
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The automatic conservation property of the proposed method can be con-
firmed by noticing

⋃
i′∈U(i) C(i′, h/r) = C(i, h), Ai,q =

∑
i′∈U(i) b

i′

q , and

1

rD
∑

i′∈U(i)
〈φ〉i′ =

∑
i′∈U(i)

bi′ · a =
∑

i′∈U(i)

∑
q

bi
′

qaq,=
∑
q

Ai,qaq = 〈φ〉i.

Apart from the finite volume formulation and the fact that the fine ghosts
unite to the coarse cell, #S = ND

p is a necessary condition for automatic
conservation. Indeed, this is why #S = ND

p is required in Definition 1.

The smallest condition number of the basis matrices grows rapidly with p and
D, e.g., it is O(105) for p = 6, D = 3. Thus solving (17) for a and using it for
the evaluation of the unknown values incurs unnecessary loss of accuracy. To
avoid this, the coarse cell averages are directly mapped to fine ghost averages
by the CFI matrix

B = A′A−1 ⇒ ΦU = BΦS , (20)

where A is defined by (18) and the rows of A′ are the row vectors bi′ ’s in
(19). Because only integers are involved in (18), (19), and (20), the assem-
bly of B from these equations can and should be made exact by rational
number calculations. Avoiding the ill-conditioning of the basic matrix A, the
conditioning of the proposed method is measured by the ∞-norm of B. The
accuracy advantage of exactly calculating B is shown in Table 1 by the much
larger magnitude of cond(A) than that of ‖B‖∞. Note that norms other than
‖B‖∞ are not appropriate metrics for conditioning or amplification of the
CFI linear map because B is only an organizing convenience for the fine ghost
cells. Alternatively, we might as well state that CFI of each fine ghost cell is
performed by vector inner products.

At the compile time, we enumerate all distinct 4-tuples (p,D, r, i∗) with i∗ ≥
0,S(i∗) ∈MD

p and precompute the corresponding CFI matrices once and for

all. For each (p, D), the number of stencils to be stored is thus (1 + bp/2c)D.
At the runtime, we select a CFI matrix B for each coarse cell i and perform
CFI by matrix-vector products as in (20); the complexity is clearly O(1). In
selecting B, the first method is to directly calculate j∗(i) by (13) and deduce
i∗ from (16). However, when two boxes are adjacent to each other, there might
exist a better stencil (in terms of ‖B‖∞) than that chosen based on a single
box. Considering this, the second method organizes all the stencils in a priority
queue with ‖B‖∞ as the priority. For each coarse cell whose underlying fine
ghost cells need interpolation, the queue is popped until the current queue
top or one of its symmetries fits into Ω`. The number of pops before finding
a matching stencil depends on the coarse-fine geometry and the worst case
is the length of the queue (1 + bp/2c)D. The first method is advantageous
in its speed while the second method in always obtaining the stencil with
the smallest ‖B‖∞, even for arbitrarily complex coarse-fine geometry; one
reasonable settlement is to use the first method for large (p, D)’s and the
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Table 1
A compare of the∞-norm of the CFI matrices to the condition numbers of the basis
matrices. Here the stencil is generated by i∗ =

⌊p
2

⌋
1.

‖B‖∞, r = 2 ‖B‖∞, r = 4 cond(A)

D = 2 D = 3 D = 4 D = 2 D = 3 D = 4 D = 2 D = 3 D = 4

p = 2 1.75 2.50 3.50 2.19 3.62 5.62 8.67e+00 1.52e+01 2.31e+01

p = 3 2.06 2.69 3.50 2.45 3.44 5.91 3.44e+01 5.35e+01 7.82e+01

p = 4 2.31 4.27 7.81 3.28 8.25 18.62 2.14e+02 8.17e+02 1.55e+03

p = 5 2.35 3.75 5.99 2.93 7.01 17.11 2.56e+03 4.45e+03 9.01e+03

p = 6 2.81 6.80 16.30 4.42 17.76 56.46 2.13e+04 1.61e+05 3.77e+05

second method for smaller ones.

For pure hyperbolic problems with shocks and large gradients in φ, ‖B‖∞ > 1
may create oscillations. However, special treatments of the convection term
such as limiters or non-oscillatory schemes are necessary anyway even if there
is no coarse-fine interface. Operating on a set of codimension one, a CFI
method should not be responsible for a stability problem encompassing the
whole computational domain. On the other hand, any generated stencil is con-
tained in a box of size (p+ 1)D; thus, as h→ 0, ΦS tends to a constant vector
for a smooth function. Consequently, all components of ΦU are the same con-
stant, due to the fact that each row of B sums up to 1. In other words, the
amplification of the CFI matrix approaches 1 as h → 0. This is the reason
that local polynomial interpolation has been acceptable and, as a matter of
fact, successful.

Precomputing the CFL matrix from pre-selected stencils applies equally well
to LLS approaches, since a well-posed equality-constrained least square prob-
lem can always be converted to an unconstrained one [5, p.585] and solved by
QR factorizations. A LLS stencil more symmetric than a transformed princi-
pal stencil can be obtained by simply adding more source points to the latter.
Eventually this also leads to a linear map from ΦS to ΦU , with its distinguish-
ing feature as #S > ND

p . For the case p = 5, D = 2, the perfectly symmetric
LLS stencil SL = {i ∈ Z2 : |i| ≤ 3} has ‖B‖∞ = 2.11, 2.58 for r = 2, 4,
which are even smaller than those (2.35, 2.93) in Table 1; for higher degrees
and dimensions, a perfectly symmetric stencil might contain too many source
points. Nonetheless, a transformed principal stencil enables a user to have fine
control over the number of additional points and to decide her own balance
between the computational cost and the conditioning ‖B‖∞. To sum up, the
algorithms proposed in this section also benefits the LLS approach.

Finally, AMRCFI [10], the accompanying MATLAB R© package implementing
the proposed algorithms, is made freely available so that an interested reader
can find more details, generate CFI matrices of specific ranges, or reproduce
some of the test results presented in the next section.
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3 Tests

In this section, the CFI matrices are first tested using polynomials and sinu-
soidal functions to examine the conditioning and accuracy, then we employ
them in complex fourth-order AMR computations to give the reader more
confidence on the stability and convergence of the proposed method. Profiling
the vortex ring test shows that CFI consumes about one third of the total
CPU time for one Poisson solve while a CFI without precomputing the linear
map quadruples the total running time.

3.1 Polynomial interpolation: conditioning

In this test, ΦS and ΦU are first initialized by averaging polynomial functions
of various degrees, with their coefficients randomly generated with zero mean
and unit standard deviation. The CFI matrices of the same degrees are then
used to compute the error

E =
‖ΦU −BΦS‖
‖ΦU‖

. (21)

The calculations are performed for (p,D, r) ∈ (2, 3, 4, 5, 6) × (2, 3, 4) × (2, 4),
and i∗ = 0, (bp

2
c, 0, ..., 0), bp

2
c1. The maximum error Emax always occurs at

(p,D, r) = (6, 4, 4) with Emax = 1.2 × 10−14, 9.6 × 10−15, 1.9 × 10−15 for the
above three i∗’s, respectively. In all cases, Emax is only a fraction of the upper
bound ‖B‖∞ε with ε being the machine epsilon of double-precision floating-
point numbers.

3.2 Sinusoidal interpolation: convergence

In this test, ΦS and ΦU are initialized by cell-averages of a sinusoidal function

f(x) =
D∏

d=1

cos(xd − 1). (22)

For the case of D = 3, r = 2, the interpolation errors (21) and convergence
rates on three successively refined grids are shown in Table 2. The convergence
rates are uniformly close to p+ 1, i.e., the accuracy of the interpolation is one
order higher than the degree of the interpolating polynomial.
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Table 2
The relative errors and convergence rates based on the ∞-norms of CFI errors (21)
for the sinusoidal interpolation test. D = 3, r = 2.

i∗ = 0

h = 1/10 Oh h = 1/20 Oh h = 1/40

p = 2 5.37e-04 2.92 7.09e-05 2.96 9.10e-06

p = 3 3.04e-05 3.91 2.03e-06 3.96 1.31e-07

p = 4 3.16e-06 4.87 1.08e-07 4.94 3.51e-09

p = 5 1.76e-07 5.93 2.88e-09 5.97 4.59e-11

p = 6 2.03e-08 6.80 1.82e-10 6.89 1.54e-12

i∗ = (bp2c, 0, 0)

h = 1/10 Oh h = 1/20 Oh h = 1/40

p = 2 4.28e-04 2.93 5.62e-05 2.96 7.21e-06

p = 3 1.69e-05 3.82 1.20e-06 3.91 7.93e-08

p = 4 2.20e-06 4.86 7.57e-08 4.94 2.47e-09

p = 5 1.48e-07 6.06 2.22e-09 5.97 3.53e-11

p = 6 1.44e-08 6.79 1.30e-10 6.89 1.10e-12

i∗ = bp2c1
h = 1/10 Oh h = 1/20 Oh h = 1/40

p = 2 4.97e-04 2.90 6.65e-05 2.95 8.60e-06

p = 3 2.11e-05 3.94 1.38e-06 3.97 8.82e-08

p = 4 6.34e-07 4.98 2.00e-08 4.99 6.28e-10

p = 5 1.22e-07 5.92 2.01e-09 5.96 3.22e-11

p = 6 3.01e-09 6.92 2.49e-11 6.86 2.14e-13

3.3 Vortex Rings: Poisson’s Equation

Finite-volume discretization of Poisson’s equation ∇2φ = ρ on structured
AMR grids yields

Lcomp 〈φ〉comp = 〈ρ〉comp , (23)

where 〈φ〉comp and 〈ρ〉comp are composite arrays with multiple levels, and Lcomp

is a fourth-order discrete composite Laplacian operator with refluxing at the
coarse-fine interface, i.e., the flux calculated from the coarse level is replaced
by the average of those obtained from the fine level. See [11] for more details
concerning AMR discretization.

The linear system (23) is solved by a fourth-order multigrid method, which
applies V-cycle iterations [2, ch.3] to all AMR levels after converting (23) to
the canonical residual-correction form by the fifth-order CFI matrices and pe-
riodic domain boundary conditions. As for multigrid iteration on the residual
equation, it is found that we can simply set the fine ghost cell values to zero
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Fig. 8. The polynomial in (24) with unit compact support and unit maximum value;

with no adverse influence on the multigrid convergence.

Two types of errors are calculated. The truncation error results from the dif-
ference between the discrete Laplacian Lcomp 〈φ〉 and 〈∇2φ〉 while the solution
error from that between 〈φ〉comp and 〈φ〉. The ‘exact’ cell-averages are ap-
proximated by a sixth order Newton-Cotes quadrature formula. A composite
sinusoidal function is used for the truncation error while a complex polynomial
function imitating a pair of vortex rings for the solution error.

A vortex ring here is a ring torus, i.e., a surface of revolution generated by
revolving a circle about an axis coplanar and disjoint with the circle. It can
also be interpreted as the Cartesian product of this circle to another bigger
circle formed by revolving the center of the smaller circle around the axis.
Let nv denote the direction of the axis, xc the center of the big circle, and
Rs, Rb the radii of the small and big circles, respectively. Project a vector
xv = x− xc to nv and denote the image as xp = (xv · nv)nv. The normalized
minimum distance from x to the big circle is thus

rv(x) =
1

Rs

√
‖xp‖22 + (‖xv − xp‖2 −Rb)

2.

The vorticity is assigned to be a constant zero outside the vortex ring, a
constant maximum vorticity φmax for the big circle; within a cross-section of
the ring, the vorticity quickly decreases to zero at the perimeter of the small
circle:

φ(rv) =

0, rv > 1

φmax

(
r2v − 1

)8
, rv ≤ 1

. (24)

See Fig. 8 for a plot of (24). Note that φ(0) = φmax, and φ(n)(rv) = φ(n)(−rv) =
0, ∀n = 0, 1, · · · , 7, i.e., the vorticity is forced to be continuous up to the
seventh order. To satisfy the solvability condition, the computational domain
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Table 3
Errors and convergence of the vortex ring test. The solution errors are for the vortex
ring pair while the truncation errors are evaluated using another exact solution
φ(x) = Σk=2,4

∏D−1
d=0 sin(kπxd) on the same AMR grids.

Base grid h 1/16 Rate 1/32 Rate 1/64 Rate 1/128

Solution L∞ 3.37e-01 2.42 6.31e-02 3.89 4.26e-03 3.91 2.84e-04

Solution L1 3.88e-02 4.08 2.29e-03 7.01 1.77e-05 4.26 9.28e-07

Solution L2 5.22e-02 3.88 3.54e-03 4.75 1.32e-04 3.95 8.53e-06

Truncation L∞ 6.42e-02 2.51 1.13e-02 2.89 1.51e-03 3.00 1.90e-04

Truncation L1 3.69e-03 3.91 2.45e-04 3.98 1.55e-05 4.00 9.68e-07

Truncation L2 9.43e-03 3.40 8.96e-04 3.50 7.95e-05 3.51 6.98e-06

contains a pair of vortex rings whose maximum intensities have the same
absolute value but opposite signs, so that the RHS of (23) sums to zero.

In generating the AMR hierarchy, we first initialize vorticity on the coarsest
level, tag the cells where the absolute value of vorticity are bigger than a
certain threshold, then organize the tagged cells into boxes, which are refined
to be a finer level [1]. These procedures can be repeated to generate more
refinement levels.

The vortex-ring solution on the finest AMR hierarchy is shown in Fig. 9,
with the errors and convergence rates listed in Table 3. As expected, the L∞
convergence rate of the solution error is close to 4 while that of the truncation
error around 3. A variety of the transformed stencils are tested by the small
boxes on the finest level.

The CPU time is also profiled for the solution tests in serial runs; the program
is mostly written in C++ with low-level number-crunching subroutines in
Fortran 77. CFI turns out to be a major time consumer of the AMR Poisson
solver: for the proposed method with precomputation, 30.6% CPU time of the
total solution tests are spent on CFI. Two LLS methods with and without CFI
matrix precomputation from pre-selected LLS stencils are also implemented
by QR factorizations. For CFI subroutines alone, the ratios of the CPU time
to that of the proposed CFI method are 1.21 and 11.7, respectively. Clearly,
precomputing CFI matrices is necessary for efficiency: the total CPU time for
a AMR Poisson solve would be quadrupled without it.

3.4 Vortex Shear: The Convection-Diffusion Equation

This test solves the 2D convection-diffusion equation

∂u

∂t
= −(u · ∇)u + g + ν∇2u (25)
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Fig. 9. The vortex-ring AMR hierarchy with base grid as 1283 and the iso-surfaces
of the solution φ = 0.1φmax. The proper nesting width is 2 and the refinement
ratio r = 2. The cells in the coarsest level (the big box with thin solid lines) with
| 〈φ〉 | ≥ 10−4|φmax| are tagged and refined to form the first refinement level (not
shown) and those with | 〈φ〉 | ≥ 10−3|φmax| form the second refinement level (the
boxes with thick lines). The computational domain is [0, 10]3 and other parameters
of the vortex ring pairs are: φmax = ±10, Rb = 3, Rs = 0.5, nv = (0, 0, 1)T ,
xc = (5, 5, 5± 2.5)T .

by a six-stage, fourth-order, additive Runge-Kutta (ARK) method, which
treats the nonstiff convection and forcing terms explicitly, and the stiff dif-
fusion term implicitly [11]. The exact solution is a divergence-free velocity
field with a single vortex,

u(x, y) = cos
πt

T

(
sin2(πx) sin(2πy),− sin(2πx) sin2(πy)

)
, (26)

where T = 8, and the forcing term g is derived from (26) and (25). At t = T
2
,

the velocity is reversed so that any scalar field advected by this vortex flow
returns to its initial condition at t = T , see Fig. 16 in [13] for a rendering of
the flow.

An AMR hierarchy in this test contains three static locally-refined grids, see
Fig. 10 for the details. On three successively-refined AMR hierarchies, the
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Table 4
Solution errors and convergence of the vortex shear test. ν = 0.01.

Base grid h 1/32 Rate 1/64 Rate 1/128

te = T
4 , the horizontal velocity

Solution L∞ 2.55e-04 4.00 1.60e-05 4.00 1.00e-06

Solution L1 3.84e-05 4.04 2.34e-06 4.01 1.45e-07

Solution L2 6.03e-05 4.03 3.70e-06 4.00 2.30e-07

te = T
4 , the vertical velocity

Solution L∞ 1.74e-04 4.07 1.04e-05 4.02 6.39e-07

Solution L1 3.58e-05 4.03 2.20e-06 4.01 1.37e-07

Solution L2 5.02e-05 4.03 3.08e-06 4.00 1.92e-07

te = T , the horizontal velocity

Solution L∞ 1.67e-03 4.03 1.02e-04 4.00 6.39e-06

Solution L1 3.69e-04 4.02 2.27e-05 4.00 1.42e-06

Solution L2 5.08e-04 4.02 3.12e-05 4.00 1.95e-06

te = T , the vertical velocity

Solution L∞ 1.34e-03 3.99 8.44e-05 3.99 5.31e-06

Solution L1 3.49e-04 4.02 2.16e-05 3.99 1.35e-06

Solution L2 4.98e-04 4.02 3.07e-05 4.00 1.93e-06

initial condition, set by cell-averaging (26) with a sixth-order Newton-Cotes
quadrature formula, is advanced to two ending time instances te = T

4
, T . The

domain boundary conditions are homogeneous Dirichlet, realized through fill-
ing the domain ghost cells by the formulae in [11]. Since sub-cycling is not
used, the time step size is restricted by the smallest grid size; the longer run
te = T with Courant number Cr = 1.28 (the ARK solver is stable provided
Cr <

2.91
D

[11]) thus entails 12,800 time steps on the finest hierarchy.

In addition to the scenarios mentioned in the previous section, CFI also fa-
cilitates explicitly evaluating the Laplacian operator and convection operator,
it is thus applied 18 times to all fine levels per time step and 203,400 times
for the longer run on the finest hierarchy! This rough estimation signifies the
efficiency of CFI; on the other hand, any instability in CFI tends to manifest
itself after being applied so many times.

The solution errors and convergence rates are shown in Table 4. For all three
types of norms, the convergence rate is uniformly four, although the shapes
of the refinement levels create a slight asymmetry between the horizontal and
vertical velocity components. The solution errors for the longer run on the
finest hierarchy are plotted in Fig. 10; notice how the mosaic patterns vanish
across the coarse-fine interface from the coarsest level into the first refinement
level. With multigrid convergence ratio set to 10−10, no instability of CFI is
observed.
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(a) te = T
4

(b) te = T

Fig. 10. Error plots of the horizontal velocity for the vortex shear tests. Cr = 1.28.
The coarsest level [0, 1] × [0, 1] is covered by the white boxes, the first refinement
level [18 ,

7
8 ]× [0, 14 ] by the blue boxes, and the second refinement level [14 ,

3
4 ]× [0, 1

16 ]
by the black boxes. The base grid size is h = 1

128 and the refinement ratio r = 4.

20



4 Conclusion

The author proposes a simple, generic, and efficient method of conservative
coarse-fine interpolation for high-order AMR solvers. The essential contribu-
tion is a heuristic ‘align-cut-and-flip’ algorithm for generating a family of
poised stencils that conforms to the local geometry of available coarse cells.
Since the number of points in a poised stencil equals the dimension of the poly-
nomial space, this algorithm is also very useful for least square approaches, as
more points can be added without influencing the poisedness of the stencil.
By further exploiting the static geometry of structured AMR, CFI is reduced
to multiplying the CFI matrix with the known values at a chosen stencil.
Numerical tests show satisfactory results in terms of stability and accuracy.
Although the derivation assumes cell-averaged values and uniform grid size, it
is straightforward to derive similar interpolation matrices for point values and
non-uniform grids by modifying AMRCFI [10], the companion MATLAB R©

package readily available online.

Apart from CFI, physical quantities often needs to be extended smoothly
across an irregular interface within a single level ; the interpolating formulae
have to meet additional physical constraints such as the isotropic stress at a
free surface [14] and the jump conditions at an irregular solid-fluid interface
[15]. These scenarios fall out of the scope of this work since the interpolation
source will be poorly characterized by rectangular boxes. The next step along
this line of research is to develop an interpolation algorithm applicable to more
constraints and more complex geometries.
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